Thursday, November 28, 2019

Current Status Of Malaria Vaccinology Essays - Malaria, Apicomplexa

Current Status of Malaria Vaccinology In order to assess the current status of malaria vaccinology one must first take an overview of the whole of the whole disease. One must understand the disease and its enormity on a global basis. Malaria is a protozoan disease of which over 150 million cases are reported per annum. In tropical Africa alone more than 1 million children under the age of fourteen die each year from Malaria. From these figures it is easy to see that eradication of this disease is of the utmost importance. The disease is caused by one of four species of Plasmodium These four are P. falciparium, P .malariae, P .vivax and P .ovale. Malaria does not only effect humans, but can also infect a variety of hosts ranging from reptiles to monkeys. It is therefore necessary to look at all the aspects in order to assess the possibility of a vaccine. The disease has a long and complex life cycle which creates problems for immunologists. The vector for Malaria is the Anophels Mosquito in which the life cycle of Malaria both begins and ends. The parasitic protozoan enters the bloodstream via the bite of an infected female mosquito. During her feeding she transmits a small amount of anticoagulant and haploid sporozoites along with saliva. The sporozoites head directly for the hepatic cells of the liver where they multiply by asexual fission to produce merozoites. These merozoites can now travel one of two paths. They can go to infect more hepatic liver cells or they can attach to and penetrate erytherocytes. When inside the erythrocytes the plasmodium enlarges into uninucleated cells called trophozites The nucleus of this newly formed cell then divides asexually to produce a schizont, which has 6-24 nuclei. Now the multinucleated schizont then divides to produce mononucleated merozoites . Eventually the erythrocytes reaches lysis and as result the merozoites enter the bloodstream and infect more erythrocytes. This cycle repeats itself every 48-72 hours (depending on the species of plasmodium involved in the original infection) The sudden release of merozoites toxins and erythrocytes debris is what causes the fever and chills associated with Malaria. Of course the disease must be able to transmit itself for survival. This is done at the erythrocytic stage of the life cycle. Occasionally merozoites differentiate into macrogametocytes and microgametocytes. This process does not cause lysis and there fore the erythrocyte remains stable and when the infected host is bitten by a mosquito the gametocytes can enter its digestive system where they mature in to sporozoites, thus the life cycle of the plasmodium is begun again waiting to infect its next host. At present people infected with Malaria are treated with drugs such as Chloroquine, Amodiaquine or Mefloquine. These drugs are effectiv e ateradicating the exoethrocytic stages but resistance to them is becoming increasing common. Therefore a vaccine looks like the only viable option. The wiping out of the vector i.e. Anophels mosquito would also prove as an effective way of stopping disease transmission but the mosquito are also becoming resistant to insecticides and so again we must look to a vaccine as a solution Having read certain attempts at creating a malaria vaccine several points become clear. The first is that is the theory of Malaria vaccinology a viable concept? I found the answer to this in an article published in Nature from July 1994 by Christopher Dye and Geoffrey Targett. They used the MMR (Measles Mumps and Rubella) vaccine as an example to which they could compare a possible Malaria vaccine Their article said that "simple epidemiological theory states that the critical fraction (p) of all people to be immunised with a combined vaccine (MMR) to ensure eradication of all three pathogens is determined by the infection that spreads most quickly through the population; that is by the age of one with the largest basic case reproduction number Ro. If a vaccine can be made against the strain with the highest Ro it could provide immunity to all malaria plasmodium " Another problem faced by immunologists is the difficulty in identifying the exact antigens which are targeted by a protective immune response. Isolating the specific antigen is impeded by the fact that

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.